Stable Domination and Independence in Algebraically Closed Valued Fields
نویسندگان
چکیده
This book addresses a gap in the model-theoretic understanding of valued fields that has, until now, limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part.
منابع مشابه
Imaginaries in algebraically closed valued fields
These notes are intended to accompany the tutorial series ‘Model theory of algebraically closed valued fields’ in the Workshop ‘An introduction to recent applications of model theory’, Cambridge March 29–April 8, 2005. They do not contain any new results, except for a slightly new method of exposition, due to Lippel, of parts of the proof of elimination of imaginaries, in Sections 8 and 9. They...
متن کاملDefinable sets in algebraically closed valued fields: elimination of imaginaries
It is shown that if K is an algebraically closed valued field with valuation ring R, then Th(K) has elimination of imaginaries if sorts are added whose elements are certain cosets in K of certain definable R-submodules of K (for all n ≥ 1). The proof involves the development of a theory of independence for unary types, which play the role of 1-types, followed by an analysis of germs of definabl...
متن کاملModel Theory of Valued fields
These notes focus mainly on the model theory of algebraically closed valued fields (loosely referred to as ACVF). This subject begins with work by A. Robinson in the 1950s (see the proof of model completeness of algebraically closed valued fields in [41]). Thus, it predates the major work of Ax-Kochen and Ershov around 1963; and, unlike the latter (and much subsequent work on quantifier elimina...
متن کاملValuation bases for generalized algebraic series fields
a r t i c l e i n f o a b s t r a c t Keywords: Valuation independence Generalized series fields Fields of Puiseux series Restricted exponential function We investigate valued fields which admit a valuation basis. Given a countable ordered abelian group G and a real closed or algebraically closed field F with subfield K , we give a sufficient condition for a valued subfield of the field of gene...
متن کاملGrothendieck Homomorphisms in Algebraically Closed Valued Fields
We give a presentation of the construction of motivic integration, that is, a homomorphism between Grothendieck semigroups that are associated with a first-order theory of algebraically closed valued fields, in the fundamental work of Hrushovski and Kazhdan [12]. We limit our attention to a simple major subclass of V -minimal theories of the form ACVF S , that is, the theory of algebraically cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007